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Abstract. We consider matter-wave bright solitons in the presence of three-body atomic recombination,
an axial periodic modulation and a feeding term, and use a variational method to derive conditions to have
dynamically stabilized solitons due to compensation between the dissipation and alimentation of atoms
from external sources. We critically examine how the BEC soliton is affected by the imbalance between
the internal atom loss and external feeding. We pay special attention to study the influence of these terms
on the soliton dynamics in optical lattice potentials that cause periodic modulation.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations – 05.45.Yv Solitons

1 Introduction

Almost simultaneously, but independently of each other,
two different groups, one at École Normale Supérieure in
Paris [1] and other at Rice University [2], observed matter-
wave bright solitons by transferring a Bose-Einstein con-
densate (BEC) of 7Li from the initial magnetic trap to
an optical trap and ultimately releasing the BEC into a
horizontal one-dimensional (1D) waveguide. The Paris ex-
periment was carried out with a small number of atoms
in the BEC and its motion was studied in an expulsive
potential. In contrast with this, the Rice experiment pro-
duced a train of as many as fifteen solitons by working
with a condensate consisting of a large number of atoms.
These solitons — resulting from modulational instability
(MI) [3] induced primarily by the manipulation of atomic
scattering length — are apparently stabilized by repulsive
soliton-soliton interactions. However, a soliton in a BEC
can suffer from loss of atoms due to two- and three-body
recombination. The two-body loss can be completely sup-
pressed in the internal atomic state |F = 1, mF = 1〉 of
7Li obtained by magnetic tuning of the scattering length
that parameterizes the two-body atom-atom interaction.
But the three-body loss remains sizeable. The BEC dy-
namics may also be affected by supply of atoms from an
external source to compensate the loss due to three-body
atomic recombination.

In this work we try to accommodate the effect of dissi-
pation and external feeding on the BEC within the frame-
work of mean-field approximation in which the formation
and subsequent evolution of the BEC solitons are gov-
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erned by the time-dependent Gross-Pitaevskii (GP) equa-
tion written as[

−i� ∂
∂t

− �
2

2m
∇2 + Vext(�r) + Vint(�r) +

i

2
Γ

]
ψ = 0. (1)

Here ψ = ψ(�r, t) is the wave function of the condensate.
The function ψ is also called the order parameter. The
external potential is of the form

Vext(�r) =
1
2
mω2

⊥
(
r2 + λ2z2

)
+ κER cos2(kLz) (2)

with r2 = x2 + y2. The first term in (2) represents a har-
monic trap arising due to initial magnetic confinement of
the BEC while the second term is a contribution to Vext(�r)
by the periodic optical lattice. We note that ω⊥ is the
radial trapping frequency and λ = ωz

ω⊥
with ωz, the axial

trapping frequency. Clearly, m stands for the mass of each
atom in the condensate. We have denoted the strength of
the periodic potential by κ and wavenumber of the inter-
ference pattern in the optical lattice by kL

(
= 2π

λ

)
such

that the recoil energy ER = �
2k2

L

2m [4]. The internal poten-
tial is given by

Vint (�r) = VHF (�r) + V3B (�r) , (3)

where V3B(�r) is the contribution to Vint due to three-
body recombination. Understandably, VHF (�r) is the usual
Hartree-Fock potential as arises from the mean-field ap-
proximation. If the GP equation involves the interactions
Vext(�r) and Vint(�r) only, then the BEC solitons will decay
and eventually disappear as they propagate. However, in
addition to these interactions, if we can have a supply of
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atoms from external sources, we can produce dissipation
managed solitons. The quantity iΓ

2 in (1) represents such
an appropriate feeding term. The expressions for VHF (�r)
and V3B(�r) are given by

VHF (�r) = g|ψ|2 and V3B(�r) = −i�
2
K3|ψ|4. (4)

The strength of the two-body interaction is g = 4π�
2as

m
with as, the atomic scattering length. Here K3 represents
the rate of three-body recombination loss. Abdulleav and
Salerno [5] investigated the general properties of localized
states of 1D BECs in optical lattices with the elastic three-
body inter-atomic interactions modeled by a real quintic
nonlinearity. They examined at some length the effect of
inelastic scattering by adding a quintic dissipative term
just as ours. The general conclusion was that the damp-
ing effects are important only when the ratio between the
imaginary and real parts of the three-body interaction is
not small. Although, there has been some discussion on
the effect of atoms feeding from the thermal cloud, conse-
quences of the imbalance between feeding and three-body
recombination terms remained largely unexplored. How-
ever, such studies are expected to be quite interesting. For
example, in the recent past, Adhikari [6] used a perturba-
tive procedure to show that alimentation of atoms from
external sources may compensate the dissipation loss to
produce a dynamically stabilized soliton.

The object of the present paper is to derive a use-
ful theoretical framework for studying the properties of
matter-wave bright solitons as governed by (1). We shall
be concerned with a quasi-one-dimensional (Q1D) BEC
soliton in a ciger-shaped trap with axially symmetric con-
figuration. We shall first consider how a dynamically stabi-
lized soliton could be prepared in this geometry and then
examine, in some detail, the dynamics of BEC solitons
formed on an optical lattice potential when there is im-
blance between the feeding and three-body recombination
terms. The GP equation in (1) is nonintegrable. Ideally,
therefore, one would like to implement a purely numeri-
cal routine to study the dynamical properties of the soli-
ton solution supported by it. We shall, however, take re-
course to the use of an approximation method and try to
proceed analytically as far as possible and invoke the in-
evitable numerical programme only at the last step. The
method we follow here will be based on a variational ap-
proximation which incorporates the width and amplitude
as variational parameters. In this context, we note that, in
addition to being nonintegrable, the equation under con-
sideration represents a dissipative system. As opposed to
conservative systems, the equation of motion of dissipative
dynamical systems cannot be treated by the variational
principle. This tends to pose an awkward analytical con-
straint for our proposed variational study. Over the years,
a number of methods have been devised to circumvent this
discrimination against nonconservative systems [7]. One
of the best known methods is provided by the Rayleigh
dissipation function [8]. In this case, it takes two scalar
functions to specify the equation of motion. This route
has been followed by Cerda et al. [9] to develop a varia-

tional approach to study nonlinear dissipative pulse prop-
agation. The method is quite effective to deal with two-
and three-body inelastic processes [10] that are present in
a BEC.

In Section 2 we seek a Q1D reduction of (1) and briefly
indicate how one could use a variational method to solve
the reduced equation. We introduce, in Section 3, the ex-
plicit form of the trial wave function having a number of
variational parameters and obtain the evolution equations
of these parameters. Furthermore, we find an expression
for the amplitude of the dissipation managed soliton in
term of Γ and K3. When the atom loss and the exter-
nal feeding are unequal, the number of atoms in the BEC
soliton becomes a function of time. The width and ampli-
tude of the soliton also become time dependent. We derive
equations for these time-dependent quantities with a view
to compare in Section 4 the properties of overfed and dis-
sipative solitons with those of the stabilized soliton.

2 Q1D GP equation and variational method

2.1 Dimensional reduction of (1)

To obtain the Q1D equation from (1) we begin by express-
ing it in the dimensionless variables defined by

τ = ω⊥t, ρ =
r

a0
, s =

z

a0
, ψ(r, z, t) =

u(ρ, s, τ)

a
3
2
0

.

The quantity a0 =
√

�

mω⊥
stands for the size of the

ground-state solution of the noninteracting GP equation.
This gives

− iuτ − 1
2

[
1
ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+
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]
+
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+
κER cos2(kLa0s)

�ω⊥
u+

i

2
Γ

�ω⊥
u+

4π�as

ω⊥a3
0m

|u|2u

− iK3

2ω⊥a6
0

|u|4u = 0. (5a)

We have written (5a) in cylindrical coordinates. If the
wave function ψ(�r, t) is normalized to the number of par-
ticles N(t) in the condensate at any instant of time ac-
cording to ∫

|ψ|2d3r = N(t) (5b)

then it is obvious that∫
|u|2ρdρds = N(τ)/2π. (5c)

In writing (5b) and (5c) we have regarded the number
of particles in the BEC as a function of time presumably
because our system is either dissipative or overfed. Using
a separable ansatz

u (ρ, s, τ) = φ(ρ)ξ(s, τ) (6)
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we rewrite (5a) in the form

1
ξ

[
−iξτ − 1

2
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1
2
λ2s2ξ +

κER cos2(kLa0s)
�ω⊥

ξ +
i

2
Γ

�ω⊥
ξ

]

+ 4π
as

a0
|ξ|2|φ|2 − iK3

2ω⊥a6
0

|ξ|4|ξ|4 =

− 1
φ (ρ)

[
−1

2
1
ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1
2
ρ2φ

]
. (7)

In (7) the subscript on ξ stands for partial derivatives
with respect to that particular independent variable. More
specifically, ξ2s = ∂2ξ

∂s2 . This equation shows that the pres-
ence of atom-atom interaction and three-body recombina-
tion loss does not permit clear cut separation of variables.
However, these terms are quite small such that φ may be
assumed to satisfy

−1
2

1
ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1
2
ρ2φ = ωρφ (8)

with ωρ related to ω⊥ by a scaling factor. Equation (8)
represents the well-known eigenvalue problem for the two-
dimensional harmonic oscillator with the ground state so-
lution given by

φ0(ρ) = e−ρ2/2. (9)

Thus (7) can be written as

− iξτ − 1
2
ξ2s +

1
2
λ2s2ξ +

κER cos2(kLa0s)
�ω⊥

ξ +
i

2
Γ

�ω⊥
ξ

+ 4π
as

a0
|ξ|2ξ|φ|2 − iK3

2ω⊥a6
0

|ξ|4ξ|φ|4 = ωρξ. (10)

The low-frequency vibration along the z-direction is quite
unlikely to excite the ground state. In view of this we
multiply (10) by φ	φ and integrate over the ρ coordinate
to get

− iξτ − 1
2
ξ2s +

1
2
λ2s2ξ +

κER cos2(kLa0s)
�ω⊥

ξ

+
i

2
Γ

�ω⊥
ξ + 2π

as

a0
|ξ|2ξ − iK3

6ω⊥a6
0

|ξ|4ξ = ωρξ. (11)

Equation (11) can be written in a more convenient form
by using the change of variable

ξ(s, τ) = χ(s, τ)e−iωρτ . (12)

Using (12) in (10) we write

iχτ +
1
2
χ2s +

1
2
λ2

zs
2χ− κER cos2(kLa0s)χ

− 2πas

a0
|χ|2χ = i

(
Γ

2�ω⊥
χ− K3

6ω⊥a6
0

|χ|4χ
)

(13)

with ∫ +∞

−∞
|χ|2ds =

N

π
. (14)

Equation (13) represents our desired Q1D equation. Be-
cause of the constant supply of atoms we will be able to
derive conditions under which the solution of (13) will sup-
port a dissipation managed soliton solution with an axial
periodic modulation. In the following we outline how our
initial boundary value problem can be converted into a
variational problem.

2.2 Variational formulation of (13)

If the right side of (13) is zero the corresponding initial
boundary-value problem can be converted to a variational
problem with a Lagrangian density written as

LC = iχ	χτ − 1
2
χsχ

	
s −

1
2
λ2s2χχ	

− κER cos2(kLa0s)
�ω⊥

χχ	 − 2
πas

a0
χ2χ	2. (15)

We have used the subscript C on L to indicate that the
Lagrangian density in (15) when substituted in the appro-
priate Euler-Lagrangian equation gives only the conserva-
tive part of (13). To incorporate the effects of dissipation
and of feeding we must now add to LC a term LNC closely
related to the Rayleigh dissipation function such that

δLNC

δχ	
= −R(χ, χ	) (16)

with

R(χ, χ	) = −i
(

Γ

2�ω⊥
χ− K3

6ω⊥a6
0

|χ|4χ
)
. (17)

If we now introduce an appropriate trial function for
χ(s, τ) characterized by the variational parameter ηi, then
the Rayleigh-Ritz optimization procedure when applied to
the Euler-Lagrange equation for the total Lagrangian will
lead to system of equations for ηi. In particular, we shall
get [10]

∂L

∂ηi
− d

dt

∂L

∂ηit
=
∫
ds

[
R
∂χ	

∂ηi
+R	 ∂χ

∂ηi

]
, (18)

where
L =

∫
Lt

Cds. (19)

The superscript t on LC indicates that before carrying
out the integral in (19) we must write the conservative
Lagrangian in terms of a trial wave function.

3 Variational equations for the parameters
in the trial function

To implement (18) for studying the properties of BEC
solitons which evolve according to (13) we shall make use
of the Gaussian trial function

χ(s, τ) = A(τ) exp
[
− s2

2a(τ)2
+
i

2
b(τ)s2 + iφ(τ)

]
, (20)
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where A, a, b and φ are the amplitude, width, frequency
chirp and linear phase. Note that in writing (18) the pa-
rameters A, a, b and φ were collectively denoted by ηi.
Since s is dimensionless, a(τ) must also represent a di-
mensionless quantity. The choice (20) is convenient but
by no means the only possible one, e.g. a hyperbolic se-
cant shaped ansatz would have done equally well. For the
wave function in (20) the normalization condition in (14)
gives

a(τ)A(τ)2 =
N(τ)
π3/2

(21)

for all values of τ .
From (15), (19) and (20) we get

L =
√
π

[
iAτAa−A2aφτ +

i

2
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4
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2
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]
. (22)

The reduced Lagrangian in (22) in conjunction with (18)
yields the following equations.
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)
= 2A2

[
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2�ω⊥
a− K3A

4

6ω⊥a3
0

a√
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]
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From (21) and (26) we have

dN

dτ
= 2N

[
Γ

2�ω⊥
− K3A

4

6
√

3ω⊥a6
0

]
. (27)

A dissipation managed soliton is obtained when dN
dτ = 0.

In this case (27) yields a result for the amplitude given by

A =

(
Γ

�ω⊥
3
√

3ω⊥a6
0

K3

)1/4

. (28)

The expression in (28) is in agreement with that obtained
using a perturbation theory method [6]. Using (21) in (27)

we can write the loss-rate equation in a slightly different
form

1
N

dN

dτ
=
[
Γ

�ω⊥
− K3

3
√

3ω⊥a6
0π

3
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]
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Equations (23) and (24) can be combined to get

−A2bτa
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A2

a
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√
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as

a0
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+
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Similarly, from (25) and (26) we have

ab− da

dτ
= − K3aA

4

9
√

3ω⊥a6
0

· (31)

Eliminating b from (30) and (31) we get an ordinary dif-
ferential equation for a(τ) given by

a2τ − 2K3NNτ

9
√

3π3ωa6
0

1
a

+
K2

3N
4

(
9
√

3π3ω⊥a6
0

)2 1
a3

− 1
a3

+ λ2a

−
√

2
π

Nas

a0

1
a2

− 4κER

�ω⊥
a2
0k

2
Lae

−a2
0k2

La2
= 0. (32)

Clearly, (29) and (32) represent a set of coupled equations
which we need to solve simultaneously to get the values
of N(τ) and a(τ). Note that the differential equation for
N(τ) is of first order while that for a(τ) is of second order.
This poses a problem to solve these equations simultane-
ously which one needs to study the properties of dissi-
pative solitons. To circumvent this difficulty we venture
to suggest that replacement of a(τ)2 by 〈a(0)2〉 in (29)
will not fare worse in the investigation of such proper-
ties in the presence of three-body atomic recombination.
Khaykovich et al. [1] quotes the experimental result for
〈a(0)〉 as 10 µm. We shall work with this value of 〈a(0)〉
to express N(τ) as a function of τ . Since s = z

a0
we write

〈a2(0)〉 = ( 10
a0

)2 with a0, the transverse oscillator length
measured in micrometer. In our case a0 = 1.4256 µm for
ω⊥ = 2π × 710 Hz [1] such that 〈a2(0)〉 = 49.2065.

With this average value for a(τ) we solve (29) to get

N(τ) =

⎡
⎣ C2

3C1
49.2065 +

(
C2
N2

0
− 3C1

49.2065

)
e−2C2τ

⎤
⎦

1/2

, (33)

where
C1 =

K3

9
√

3π3ω⊥a6
0

and C2 =
Γ

�ω⊥
· (34)

Clearly, the constant of integration N0 represents the ini-
tial number of atoms in the condensate. For a given value
of N0, we can use (33) to investigate how the imbal-
ance between the feeding and dissipative terms affects
the loss or gain of atoms from BEC. For τ = 0, (33)
gives N(0) = N0 while for τ = ∞ this equation gives

N(∞) =
(

49.2065
3

C2
C1

) 1
2
. Understandably, for dissipative



Sk. Golam Ali and B. Talukdar: Matter-wave bright solitons 319

 7500

 7600

 7700

 7800

 7900

 8000

 8100

 8200

 8300

 8400

 0  500  1000  1500  2000

N
(τ

)

τ

C2=0.00004095
C2=0.00001000
C2=0.00006500

Fig. 1. Number of atoms N(τ ) as a function of τ from (33).

solitons N(∞) � N0. This inequality sets a criterion for
the choice of C2 and we have C2 � 0.06C1N

2
0 . For a suit-

able value of C2, N(τ) from (33) can be substituted in
(32) to obtain a(τ) as a function of τ . The results for
a(τ) and N(τ) in conjunction with (21) determine A(τ)
for complete specification of the density profile |χ(s, τ)|2.

4 Spatio-temporal behaviour of BEC solitons

We shall first study how, in the presence of three-body
atomic recombination and external feeding, the number
of atoms in the BEC changes with τ . To that end we
have chosen to work with K3 = 1.9 × 10−26 cm6/s and
ω⊥ = 2π × 710 Hz [1] for which, as we have seen, trans-
verse oscillator length a0 = 1.426 × 10−4 cm. The result
of K3 quoted here is for 7Li. The values of K3 change sig-
nificantly if we consider BEC of other atomic gases [11].
The values used by us for other parameters in (32) are
κ = 0.2 and as = −1.59 × 10−7 cm−1 [12]. There are
three cases of interest. First the feeding term may domi-
nate over the atom loss due to three-body recombination.
Secondly, there may be perfect balance between these two
effects. Finally, the internal atom loss may dominate over
the external feeding. In Figure 1 we plot N(τ) as a func-
tion of τ as calculated from (33). Corresponding to these
three physical situations we have used C2 = 6.500× 10−5,
C2 = 4.095× 10−5 and C2 = 1.000× 10−5 respectively for
N0 = 8000. As expected, in the first case N(τ) increases
with τ (dotted line), in the second case N(τ) is a constant
for all τ being equal to N0 (solid line) and finally, in the
third case N(τ) decreases with τ (dashed line).

Substituting the values of N(τ) and Nτ (τ) from (33)
in (32) one can, in principle, make use of the fourth-order
Runge-Kutta method to solve the latter with the initial
conditions a(0) = 7.0149 and da(τ)

dτ |τ=0 = 0. For given
values of a(τ) and N(τ), the corresponding results for
A(τ) can be obtained from (21). In this context we ob-
serve that due to the transformation of length and the
time scales sought by us, we shall not be able to study

the effect of lattice potential even for very small values of
κL. This is apparent from the last term of (32). To study
the effect of an optical lattice on the BEC condensate one
should ideally, follow Choi and Niu [13] to rescale (1). In
fact, Abdullaev and Salerno [5] used this rescaling in their
study of gap-Townes solitons in the presence of dissipa-
tion. However, the choice of our scale change does not
preclude the possibility for including the effect of optical
lattice on the BEC dynamics provided we agree to work
with values of κL close to 1/

√
a(0)a0 = 2.645×103 cm−1.

We have, therefore, chosen to work with these typical val-
ues of κL. Using our chosen values of C2’s we have plotted
in Figure 2 the curves for a(τ) as a function of τ . The
left (right) panel of this figure shows the variation of a(τ)
in the absence (presence) of the lattice potential. Looking
closely into this figure we see that, irrespective of the C2

values, a(τ) as a function of τ exhibits the characteristic
oscillatory behaviour [14]. When the atom loss dominates
over feeding (C2 = 1.000 × 10−5, dashed curve) the peak
values of a(τ) for all τ lie above those of the stabilized
soliton (C2 = 4.095× 10−5, solid curve). On the contrary,
in the case of an overfed soliton (C2 = 6.500 × 10−5, dot-
ted curve) we observe the opposite. Furthermore, we note
that the peaks in a(τ) of the overfed soliton lie to the left
of the stabilized soliton and those of the underfed one lie
to the right. This general behaviour of the curves does not
change from the left to the right panel. In other words, the
optical potential does not effect the nature of response of
a(τ) to gain or loss of atoms by the BEC soliton. How-
ever, comparing the curves in the two panels, we observe
that in the presence of the lattice potential, the cusp-like
behaviour at the minima of a(τ) is smoothed out so as to
produce typical sinusoidal behaviour.

Figure 3 shows the variation of A(τ) with τ . In the left
panel, where the effect of the lattice potential is not taken
into consideration, the peaks of A(τ) are very sharp. The
peak values for the dissipative soliton (C2 = 1.000×10−5,
dotted curve) fall below those of the dissipation-managed
soliton, while similar peak values for the overfed soliton
(C2 = 6.500 × 10−5, dotted curve) are considerably aug-
mented. These observations on a(τ) and A(τ) are in agree-
ment with the constraint implied by (21). It is evident
from the figure in the right panel that the lattice potential
smoothens out the sharp peaks and produces once again
a sinusoidal pattern, although the nature of the response
of A(τ) to the gain or loss of atoms remains unaltered.

In Figure 4 we display the density profile of the sta-
bilized soliton (C2 = 4.095 × 10−4). In the left panel (no
optical lattice), the plane over the profile clearly exhibits
that as time goes on, the soliton propagates without any
dissipation. The same is true for the figure in the right
panel where we include the effect of the optical poten-
tial. It is interesting to study Bose-Einstein condensates
in optical lattices because here one adds a new length
scale to the system, namely, the lattice spacing which is
typically much smaller than the BEC itself. In addition
to the harmonic confinement, the lattice potential intro-
duces periodicity into the system and the new length scale
leads to very large local trapping frequencies. In the limit
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Fig. 2. Variation of Gaussian width a(τ ) of the BEC soliton in the absence of optical lattice (left panel) and in the presence
of optical lattice (right panel).
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A(τ ) in the absence of an optical lattice while the right panel gives a similar variation in the presence of an optical lattice.
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Fig. 4. Density profile |χ(s, τ )|2 for the stabilized soliton in the absence (left panel) and presence (right panel) of an optical
lattice.
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Fig. 6. Similar density profile |χ(s, τ )|2 for the overfed soliton as in Figures 3 and 4.

of large lattice depths it is possible to have completely
isolated micro condensates [4]. We note that in a theo-
retical framework, this length scale can be achieved by a
change of variables as used by Choi and Niu [13]. However,
we worked with a rescaling in which the lattice spacing
and the size of the condensate are of the same order. We
observe that, even in this case, the effect of the optical
lattice is quite interesting. For example, the lattice poten-
tial squeezes the density profile (right panel) which again
propagates without any dissipation. In Figures 5 and 6
we portray the soliton profiles for dissipative and overfed
solitons. In both cases we see that the lattice potential
produces a squeezing of the corresponding profiles. The
height of the dissipative soliton decreases with τ while
that for overfed soliton increases with τ . It is of inter-
est to study the time evaluation of the BEC soliton at
a particular value of s with a view to examine how the
feeding term balances the damping and stabilizes the lo-
calized states against decay [5]. In view of this, we plot in
Figure 7 |χ(1, τ)|2 as a function of τ . In the balanced con-
dition, the 2D profile values (solid curve) do not change
with τ . The dissipative soliton profile (dashed curve) de-
cays with τ while the profile for overfed soliton (dotted
curve) grows as τ increases. We conclude by noting the
following.
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Fig. 7. The magnitude of |χ(s, τ )|2 at s = 1 for different values
of the feeding term is plotted as a function of τ .

The use of variational methods to construct solu-
tions of nonlinear evolution equations is very effective
when these equations follow from the action principle.
The approach tends to break down for non-Lagrangian
dynamical systems. Matter-wave bright solitons in the



322 The European Physical Journal D

presence of three-body atomic recombination, an optical
lattice and a phenomenological gain term belong to the
latter class. This motivated us to use the method of Cadrá
et al. [9] to study the perturbation of BEC solitons due to
gain or loss of atoms. The significance of the final result
was obtained by solving the equation for N(τ) to within
an approximation. This limitation can be removed by con-
verting the first-order equation for N(τ) by differentiating
it once with respect to τ and then using the routine Runge-
Kutta method to solve the coupled differential equations
of N(τ) and a(τ). In that case one will require the value of
dN(τ)

dτ |τ=0 which is not known before hand. However, we
believe that our results are significant enough to initiate
further works along this line of investigation.

This work forms the part of a UGC (Govt. of India) funded
research project (F. No. 32-39(SR)/2006). One of the authors
(SGA) is thankful to the UGC, Govt. of India for a Senior
Research Fellowship.

References

1. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J.
Cubizoller, L.D. Carr, Y. Castin, C. Solomon, Science 296,
1290 (2002)

2. K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet,
Nature 417, 150 (2002)

3. V.V. Konotop, M. Salerno, Phys. Rev. A 65, 021602(R)
(2002); L. Fallani, L. De Sarlo, J.E. Lye, M. Modugno, R.
Saers, C. Fort, M. Jnguscio, Phys. Rev. Lett. 93, 140406
(2004); S. Rolston, Phys. World 27 (1998); S. Rolston,
Phys. World 021602 (2002)

4. O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 176 (2006)
5. F.Kh. Abduallaev, Salerno, Phys. Rev. A 72, 033617

(2005)
6. S.K. Adhikari, Laser Phys. Lett. 3, 553 (2006)
7. R.M. Santilli, Foundation of Theoretical Mechanics, The

inverse problem in Newtonian mechanics (Springer-Verlag,
New York, 1978)

8. H. Goldstein, Classical Mechanics (Narosa Publishing
House, New Delhi, India, 1998)

9. S.C. Cerda, S.B. Cavalcanti, J.M. Hickmann, Eur. Phys.
J. D 1, 313 (1998)

10. V. Filho, F.Kh. Abdullaev, A. Gammal, L. Tomio, Phys.
Rev. A 63, 053603 (2001)

11. B.D. Esry, C.H. Greene, J.P. Burke Jr, Phys. Rev. Lett.
83, 1751 (1999)

12. L. Fallani, L. De Sarlo, J.E. Lye, M. Modugno, R. Saers,
C. Fort, M. Inguscio, Phys. Rev. Lett. 93, 140406 (2004)

13. D. Choi, Q. Nui, Phys. Rev. Lett. 82, 2022 (1999)
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